On quasilinear elliptic problems with finite or infinite potential wells
نویسندگان
چکیده
Abstract We consider quasilinear elliptic problems of the form − div ( ϕ ( ∣ ∇ u ) stretchy="false">) + V x = f , width="1.0em" ∈ W 1 mathvariant="normal">Φ mathvariant="double-struck">R N -{\rm{div}}\hspace{0.33em}(\phi \left(| \nabla u| )\nabla u)+V\left(x)\phi )u=f\left(u),\hspace{1.0em}u\in {W}^{1,\Phi }\left({{\mathbb{R}}}^{N}), where xmlns:m="http://www.w3.org/1998/Math/MathML"> \phi and f satisfy suitable conditions. The positive potential C V\in C\left({{\mathbb{R}}}^{N}) exhibits a finite or infinite well in sense that V\left(x) tends to its supremum ∞ ≤ {V}_{\infty }\le +\infty as → | x| \to \infty . Nontrivial solutions are obtained by variational methods. When }=+\infty , compact embedding from subspace }\left({{\mathbb{R}}}^{N}) into L {L}^{\Phi is established, which enables us get infinitely many for case odd. For λ a V\left(x)=\lambda a\left(x)+1 steep controlled parameter \lambda we nontrivial large
منابع مشابه
A note on quasilinear elliptic eigenvalue problems
We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.
متن کاملQuasilinear Elliptic Problems with Nonstandard Growth
We prove the existence of solutions to Dirichlet problems associated with the p(x)-quasilinear elliptic equation Au = − div a(x, u,∇u) = f(x, u,∇u). These solutions are obtained in Sobolev spaces with variable exponents.
متن کاملLandesman-Laser Conditions and Quasilinear Elliptic Problems
In this paper we consider two elliptic problems. The first one is a Dirichlet problem while the second is Neumann. We extend all the known results concerning Landesman-Laser conditions by using the Mountain-Pass theorem with the Cerami (PS) condition.
متن کاملOn Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations
We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2021
ISSN: ['2391-5455']
DOI: https://doi.org/10.1515/math-2021-0053